euro联赛abcd-euro联赛积分

tamoadmin

1.欧洲杯 ABCD各小组有哪些球队?

2.都说沃尔沃是最安全的车,为什么 Euro NCAP 排行这么靠后呢?

3.谁可以告诉我md5加密原理

欧洲杯 ABCD各小组有哪些球队?

euro联赛abcd-euro联赛积分

A GROUP 场次 胜 平 负 进球 失球 积分

葡萄牙 3 2 0 1 5 3 6

土耳其 3 2 0 1 5 5 6

捷克 3 1 0 2 4 6 3

瑞士 3 1 0 2 3 3 3

B GROUP 场次 胜 平 负 进球 失球 积分

克罗地亚 3 3 0 0 4 1 9

德国 3 2 0 1 4 2 6

奥地利 3 0 1 2 1 3 1

波兰 3 0 1 2 1 4 1

C GROUP 场次 胜 平 负 进球 失球 积分

荷兰 2 2 0 0 7 1 6

罗马尼亚 2 0 2 0 1 1 2

法国 2 0 1 1 1 4 1

意大利 2 0 1 1 1 4 1

D GROUP 场次 胜 平 负 进球 失球 积分

西班牙 2 2 0 0 6 2 6

瑞典 2 1 0 1 3 2 3

俄罗斯 2 1 0 1 2 4 3

希腊 2 0 0 2 0 3 0

名次 姓名 国家 进球数

1 比利亚 西班牙 4

2 波多尔斯基 德国 3

3 雅金 瑞士 3

4 斯内德 荷兰 2

5 伊布拉西莫维奇 瑞典 2

6 图兰 土耳其 2

7 尼哈特 土耳其 2

8 佩佩 葡萄牙 1

9 梅莱勒斯 葡萄牙 1

10 摩德里奇 克罗地亚 1

11 斯维尔科斯 捷克 1

12 范尼斯特鲁伊 荷兰 1

名次 姓名 国家 进球数

13 范布隆霍斯特 荷兰 1

14 帕夫柳琴科 俄罗斯 1

15 法布雷加斯 西班牙 1

16 汉森 瑞典 1

17 德科 葡萄牙 1

18 C-罗纳尔多 葡萄牙 1

19 夸雷斯马 葡萄牙 1

20 西昂科 捷克 1

21 塞米赫 土耳其 1

22 斯尔纳 克罗地亚 1

23 奥里奇 克罗地亚 1

24 格雷罗 波兰 1

名次 姓名 国家 进球数

25 克拉什尼奇 克罗地亚 1

26 帕努奇 意大利 1

27 穆图 罗马尼亚 1

28 库伊特 荷兰 1

29 范佩西 荷兰 1

30 罗本 荷兰 1

31 亨利 法国 1

32 托雷斯 西班牙 1

33 日里亚诺夫 俄罗斯 1

34 科勒 捷克 1

35 普拉希尔 捷克 1

36 巴拉克 德国 1

都说沃尔沃是最安全的车,为什么 Euro NCAP 排行这么靠后呢?

NCAP只是反映一个方面,也即碰撞安全性,只要达到五星级,分数多少区别不是很大。连丰田也能达到的,车厂出车都会按照NCAP来的,一般都最少能通过4级。

你可以看一下VOLVO的剖面图,钢筋和铝材共分八个硬度等级,遍步全身,激光焊接,高强度底盘+防锈处理。另有一些实用为主的主动安全系统和专利,综合性来考虑,称其为同级别中最安全的车是很正确的。

曾有两位修车七八年的师傅跟我说过:富豪(VOLVO)车身强度很高,他们见的事故车多了,VOLVO不仅是硬和厚,而且实在,内部框架填充得很厚实,车身电脑和电气系统也相对较复杂,后期保养成本稍高。而凯美瑞等车,外表大气,里面都是空的,结构也不紧凑合理。这里说的凯美瑞不是指佳美(上一代CAMRY),佳美的评价还是挺不错的。

谁可以告诉我md5加密原理

2004年,已经被山东大学的王小云教授破解了。

以下是她在国际密码学会上发表的破解原理论文。

Collisions for Hash Functions

Collisions for Hash Functions

MD4, MD5, HAVAL-128 and RIPEMD

Xiaoyun Wang1, Dengguo Feng2, Xuejia Lai3, Hongbo Yu1

The School of Mathematics and System Science, Shandong University, Jinan250100, China1

Institute of Software, Chinese Academy of Sciences, Beijing100080, China2

Dept. of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai, China3

xywang@sdu.edu.cn1

revised on August 17, 2004

1 Collisions for MD5

MD5 is the hash function designed by Ron Rivest [9] as a strengthened version of MD4 [8]. In 1993 Bert den

Boer and Antoon Bosselaers [1] found pseudo-collision for MD5 which is made of the same message with two

different sets of initial value. H. Dobbertin[3] found a free-start collision which consists of two different 512-bit

messages with a chosen initial value 0 V I .

ED BA x C B F x C B AC x A V I 763 4 0 D , 97 62 5 0 , 341042 3 0x B , 2375 12 0 : 0 0 0 0 0

Our attack can find many real collisions which are composed of two 1024-bit messages with the original

initial value 0 IV of MD5:

10325476 0 , 98 0 , 89 0 67452301 0 : 0 0 0 0 0 x D badcfe x C xefcdab ,B x A IV

) 0 , 2 ,..., 2 ,..., 2 , 0 , 0 , 0 , 0 ( , 31 15 31

1 1 C C M M

) 0 , 2 ,..., 2 ,..., 2 , 0 , 0 , 0 , 0 ( , 31 15 31

2 2 C C N N i i

(non-zeros at position 4,11 and 14)

such that

) , ( 5 ) , ( 5 i i N M MD N M MD .

On IBM P690, it takes about one hour to find such M and M , after that, it takes only 15 seconds to 5

minutes to find i N and i N , so that ) , ( i N M and ) , ( i N M will produce the same hash same value. Moreover,

our attack works for any given initial value.

The following are two pairs of 1024-bit messages producing collisions, the two examples have the same 1-st

half 512 bits.

M

2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

X1

N1

d11d0b96 9c7b41dc f497d8e4 d555655a c79a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c15cc79 ddcb74ed 6dd3c55f d80a9bb1 e3a7cc35

M0

2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

X1

N1

d11d0b96 9c7b41dc f497d8e4 d555655a 479a7335 cfdebf0 66f12930 8fb109d1

797f2775 eb5cd530 baade822 5c154c79 ddcb74ed 6dd3c55f 580a9bb1 e3a7cc35

H 9603161f f41fc7ef 9f65ffbc a30f9dbf

M

2dd31d1 c4eee6c5 69a3d69 5cf9af98 87b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a417125 e8255108 9fc9cdf7 f2bd1dd9 5b3c3780

X2

N2

313e82d8 5b8f3456 d4ac6dae c619c936 b4e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0da880 bc2198c6 9383a8b6 2b65f996 702af76f

M0

2dd31d1 c4eee6c5 69a3d69 5cf9af98 7b5ca2f ab7e4612 3e580440 897ffbb8

634ad55 2b3f409 8388e483 5a41f125 e8255108 9fc9cdf7 72bd1dd9 5b3c3780

313e82d8 5b8f3456 d4ac6dae c619c936 34e253dd fd03da87 6633902 a0cd48d2

42339fe9 e87e570f 70b654ce 1e0d2880 bc2198c6 9383a8b6 ab65f996 702af76f

H 8d5e7019 6324c015 715d6b58 61804e08

Table 1 Two pairs of collisions for MD5

2 Collisions for HAVAL-128

HAVAL is proposed in [10]. HAVAL is a hashing algorithm that can compress messages of any length in 3,4

or 5 passes and produce a fingerprint of length 128, 160, 192 or 224 bits.

Attack on a reduced version for HAVAL was given by P. R. Kasselman and W T Penzhorn [7], which

consists of last rounds for HAVAL-128. We break the full HAVAL-128 with only about the 26 HAVAL

computations. Here we give two examples of collisions of HAVAL-128, where

) 0 ,..., 0 , 2 ,.... 2 , 0 , 0 , 0 , 2 ( , 8 12 1 i i i C C M M

with non-zeros at position 0,11,18, and 31 ,... 2 , 1 , 0 i , such that ) ( ) ( M HAVAL M HAVAL .

M1

6377448b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 5630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299b2 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f4307f87

M1

6377488b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 d630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299ba 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f4307f87

H 95b5621c ca62817a a48dacd8 6d2b54bf

M2

6377448b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 5630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299b2 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f5b16963

6377488b d9e59f18 f2aa3cbb d6cb92ba ee544a44 879fa576 1ca34633 76ca5d4f

a67a8a42 8d3adc8b b6e3d814 d630998d 86ea5dcd a739ae7b 54fd8e32 acbb2b36

38183c9a b67a9289 c47299ba 27039ee5 dd555e14 839018d8 aabbd9c9 d78fc632

fff4b3a7 40000096 7f466aac fffffbc0 5f4016d2 5f4016d0 12e2b0 f5b16963

H b0e99492 d64eb647 5149ef30 4293733c

Table 2 Two pairs of collision, where i=11 and these two examples differ only at the last word

3 Collisions for MD4

MD4 is designed by R. L. Rivest[8] . Attack of H. Dobbertin in Eurocrypto'96[2] can find collision with

probability 1/222. Our attack can find collision with hand calculation, such that

) 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 2 , 2 , 0 ( , 16 31 28 31 C C M M

and ) ( 4 ) ( 4 M MD M MD .

M1

4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 2794bf08 b9e8c3e9

M1

4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 2794bf08 b9e8c3e9

H 5f5c1a0d 71b36046 1b5435da 9b0d807a

M2

4d7a9c83 56cb927a b9d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dd8e31 97e31fe5 f713c240 a7b8cf69

4d7a9c83 d6cb927a 29d5a578 57a7a5ee de748a3c dcc366b3 b683a020 3b2a5d9f

c69d71b3 f9e99198 d79f805e a63bb2e8 45dc8e31 97e31fe5 f713c240 a7b8cf69

H e0f76122 c429c56c ebb5e256 b809793

Table 3 Two pairs of collisions for MD4

4 Collisions for RIPEMD

RIPEMD was developed for the RIPE project (RACE Integrrity Primitives Evalustion, 1988-1992). In

1995, H. Dobbertin proved that the reduced version RIPEMD with two rounds is not collision-free[4]. We show

that the full RIPEMD also isnOt collision-free. The following are two pairs of collisions for RIPEMD:

) 2 , 0 , 0 , 0 , 0 , 2 2 , 0 , 0 , 0 , 0 , 0 , 0 , 2 , 0 , 0 , 0 ( , 31 31 18 20 ' C C M M i i

M1

579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 817104ff 264758a8 61064ea5

M1

579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 817104ff 264758a8 e1064ea5

H 1fab152 1654a31b 7a33776a 9e968ba7

M2

579faf8e 9ecf579 574a6aba 78413511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 47bc6d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 e70c66b6

579faf8e 9ecf579 574a6aba 78513511 a2b410a4 ad2f6c9f b56202c 4d757911

bdeaae7 78bc91f2 c7c06d7d 9abdd1b1 a45d2015 a0a504ff b18d58a8 670c66b6

H 1f2c159f 569b31a6 dfcaa51a 25665d24

Table 4 The collisions for RIPEMD

5 Remark

Besides the above hash functions we break, there are some other hash functions not having ideal security. For

example, collision of SHA-0 [6] can be found with about 240 computations of SHA-0 algorithms, and a collision

for HAVAL-160 can be found with probability 1/232.

Note that the messages and all other values in this paper are composed of 32-bit words, in each 32-bit word

the most left byte is the most significant byte.

1 B. den Boer, Antoon Bosselaers, Collisions for the Compression Function of MD5, Eurocrypto,93.

2 H. Dobbertin, Cryptanalysis of MD4, Fast Software Encryption, LNCS 1039, D. , Springer-Verlag, 1996.

3 H. Dobbertin, Cryptanalysis of MD5 compress, presented at the rump session of EurocrZpt'96.

4 Hans Dobbertin, RIPEMD with Two-round Compress Function is Not Collision-Free, J. Cryptology 10(1),

1997.

5 H. Dobbertin, A. Bosselaers, B. Preneel, "RIPMEMD-160: A Strengthened Version of RIPMMD," Fast

Software EncrZption, LNCS 1039, D.Gollmann, Ed., Springer-Verlag, 1996, pp. 71-82.

6 FIPS 180-1, Secure hash standard, NIST, US Department of Commerce, Washington D. C., April 1995.

7 P. R. Kasselman, W T Penzhorn , Cryptananlysis od reduced version of HAVAL, Vol. 36, No. 1, Electronic

Letters, 2000.

8 R. L. Rivest, The MD4 Message Digest Algorithm, Request for Comments (RFC)1320, Internet Activities

Board, Internet Privacy Task Force, April 1992.

9 R. L Rivest, The MD5 Message Digest Algorithm, Request for Comments (RFC)1321, Internet Activities

Board, Internet PrivacZ Task Force, April 1992.3RIPEMD-1281

10 Y. Zheng, J. Pieprzyk, J. Seberry, HAVAL--A One-way Hashing Algorithm with Variable Length of Output,

Auscrypto'92.